Espacio cuasi completo

En análisis funcional, se dice que un espacio vectorial topológico (EVT) es cuasi completo (también escrito en ocasiones cuasicompleto, cuasi-completo, o casi completo) o limitadamente completo,[1] si todos sus subconjuntos cerrados y acotados también son completos.[2] Este concepto es de considerable importancia para los EVTs no metrizables.[2]

Propiedades

Ejemplos y condiciones suficientes

Cada EVT completo es cuasi completo.[7] El producto de cualquier colección de espacios cuasi completos es nuevamente cuasi completo.[2] El límite proyectivo de cualquier colección de espacios cuasi completos es nuevamente cuasi completo.[8] Cada espacio semirreflexivo es cuasi completo.[9]

El cociente de un espacio cuasi completo por un subespacio vectorial cerrado puede no ser cuasi completo.

Contraejemplos

Existe un espacio LB que no es cuasi completo.[10]

Véase también

Referencias

Bibliografía

  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics (en inglés) 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (en inglés) (Second edición). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM (en inglés) 8 (Second edición). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels (en inglés). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces (en inglés). Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • Wong, Yau-Chuen (1979). Schwartz Spaces, Nuclear Spaces, and Tensor Products. Lecture Notes in Mathematics (en inglés) 726. Berlin New York: Springer-Verlag. ISBN 978-3-540-09513-2. OCLC 5126158.
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.